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Simplified calculation of folding energies and residue coordination numbers
in random heteropolymers
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| develop a formalism for calculating effective pair and higher-order interactions between residues in ran-
dom heteropolymers that approximately predict the folding enthalpy and the coordination numbers of indi-
vidual residues. In a simple model heteropolymer with additive couplings between residues, the folding en-
thalpy is written in terms of two-, three-, and four-body interactions between residues. The coordination
numbers are expressed in terms of interactions between up to three residues. Applicatior Gosare
model shows that the folding enthalpy is obtained to an accuracy of better than 1%. The coordination numbers
are obtained with a rms error of 1.2 neighbdi$1063-651X99)15905-1

PACS numbd(s): 87.15.Cc, 87.14.Ee

[. INTRODUCTION help predict the foldability of given sequences of residues.
Unger and Moul{5] have argued that the reliable folding of
Prediction of the three-dimensional structure of proteinssimple model proteins is determined by the number of favor-
in terms of the amino acid sequence continues to be a daurgble local residue-residue interactions along the chain. The
ing theoretical problem. Although more efficient algorithms simplified description of the folding enthalpy can determine
are regularly being devised, there is not a single example ofvhich sequences of residues have generally favorable local
successful folding of a real protein on a computer. For thigesidue-residue interactions, so that one can predict some
reason, it is of interest to investigate other properties that araspects of foldability from the primary sequence itself, with-
related to the three-dimensional structure, but are easier tout explicitly folding the protein. The method developed
access on the basis of computer calculations. The foldingere includes up to four-body interactions, which renders it
enthalpy, or the free-energy difference between the fullycomputationally tractable even for sequences having up to
folded state and the random coil state, is a key thermody1000 residues.
namic parameter in the theory of protein foldifty. It pro- The formalism, described in Sec. Il, is based on a lattice
vides the driving force for protein folding and is related to heteropolymer model in which the residues are represented
the folding temperature. Computer simulatig@$ have sug- by hydrophobicity energies; , describing the extent of their
gested that the folding temperature is closely related to thereference for high coordination numbers. | examine the
foldability of proteins. Thus a calculation of the folding en- properties of the energy density of stat€0S) associated
ergy that avoids the full complexity of folding the protein with a particular sequence of residues. This DOS represents
can be very advantageous. The present calculations atke collection of energies of this sequence in the possible
aimed at the zero-temperature enthalpy;, of the folded folds of the polymer, so that the lower end of the DOS cor-
state, which is a key ingredient of the finite-temperature fregesponds to the minimum-energy fold. The moments of the
energy.(Other simulationd3] have pointed to the impor- DOS are obtained rigorously in terms of pair or multibody
tance of the energy gap, or the difference in energy betweeimteractions between the residues. Using the moments, | de-
the lowest- and second-lowest folds; our method is not abl@elop an approximate folding enthalpy function motivated by
to predict such delicate quantities with useful accuyaghe the known behavior of the model in certain cases. This ap-
coordination number vector of a protein has components thgiroach is analogous to previous applications of moment
are the coordination numbers of the residues, ordered accordnalysis in analyzing the energetics of metallic bondifiy
ing to their position along the chain. It provides a simplified The coordination number vector is then given as the gradient
one-dimensional description of the structure of the protein. lof the folding enthalpy function with respect to teg This
has been shown by Galaktionov and MarsHd] that an function is straightforwardly differentiated to obtain esti-
accurate estimate of the coordination number vector of a pramates for the coordination-number vector based on interac-
tein can be used as a basis for predicting first the matrix ofions of up to three residues.
contacts between residues, and subsequently the three-In Sec. lll, | describe tests of this methodology in a
dimensional structure, with promising accuracy. Thus the de6X 6 square lattice model with compact conformations. Di-
velopment of a simple method of predicting the coordinationagonal as well as vertical and horizontal neighbors are in-
number vector of a protein would be very useful. cluded in the coordination number. At the level of two-body
This paper presents a formalism for predicting the foldinginteractions, the folding enthalpy is obtained with an accu-
enthalpy and the coordination number vector in a model ranracy of 1.0%; the inclusion of four-body interactions im-
dom heteropolymer in a simple fashion, using simple interproves the accuracy to 0.7%. The coordination number is
actions between the residues. In addition to computationabbtained with a rms error of 1.31 neighbors at the level of an
economy, such a description of the folding enthalpy mayadditive function of the hydrophobicity energies; a descrip-
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tion including interactions of up to three residues reduces the R
error to 1.19 neighbors. M1=(1/N)J Ep(E)dE=(1IN)Y, E,(é) (4)
Il. MODEL AND FORMALISM and

The heteropolymer model is based on residues on a lat-
tice. The formalism applies to general lattices; | will later Mn:(llN)f (E—u1)"p(E)dE
consider a square lattice model. The interaction energy in a

given fold has the form .
=N [El(d—m]" (i=2). (5)

i#] Thus u, represents the average energy of all the folds. This

may be thought of as the energy of a molten-globule state, in

Here theh;; are interaction energies between residugsdj,  which all compactly folded states are equally representgd.
which are determined by the amino-acid types of residues represents the mean-square width of the energy distribution,
andj. The quantityy;; describes the proximity of residués and the higher moments describe various aspects of the
andj in the given fold. It is 1 ifi andj are neighbors, and shape of the distribution. From Eg&), (4), and (5), one
zero otherwise. X;; can be generalized to have several dif- readily shows that
ferent values, allowing for neighbors at different distances,
but | have not yet done so. R

The analysis of this type of model is simplified if one Ml(f):Z &(Zi), (6)
makes the assumption that thg are additive, in the sense
thath;; = €+ ¢; . This approximation is well justified, as has
been shown by Let al. [7]. They analyzed a matrix of sta- ,uz(é)zz €€(AZAZ)), @
tistical potentials[8], between residue types derived from b
observed contact frequencies, and found that the interactions i )
could be represented to good accuracy by an additive forma,lnd analogous relations hold for the higher-order moments.
the corrections to this form were generally smaller than thd 1€ré;AZi=Z;—(Z;), and the brackets denote averages over
additive terms by more than an order of magnitude. Giverin® set of folds that is included im(E), ie., (Z)

the additivity assumption, one has from K@) that =(IN)Z,Z", whereZ" is the coordination number of site
in fold a.
Thus the moments can be written in terms of simple in-
E=E €Z;, (2)  teractions between the residues, and these interactions are

! determined by statistical properties of the set of possible

hereZ. is th dinati ber of residii@ the ai folds. | now develop an approximate method of writing
whereZ; Is the coordination number of residuen the given g 2y in terms of low-order moments. | first note that when

fold. In this description, the; are energies that correspond E_ is written in terms of the moments it has the form
> . ) min
the hydrophobicities of the residues. A large negative vaIu%min:MH(M,Ma, _..), where f is a function having

of € correspono!s toa residue that prefers a _Iarge num_be_r nits of energy. This is because changesuinthat do not
neighbors and in this sense acts hydrophobically. A S'm'la%ffect the higher momentshese are defined relative o)

rand_om—hy_drophobicity model, but off-latticécontinuous correspond to a shift in the energy zero that does not change
spatial variables has been used by Garel and collaborators,[he difference betweeg. ... and | also note two impor-
[9] and Obukhov[{10] to treat some aspects of the phasetant properties of the funr]{?:tioﬁ '“ %g)

min .

diagram of proteins and other heteropolymers. : n . .

I now turn to the task of describing the zero-temperatureE (Izgl; :’“ ﬁ(?g)vﬁﬁ;i éhﬁnﬂth:e ODOS has zero width, and
energy of th.e most favorable fpld in'terms of the hydrqpho- mI(ri]i) Undelr uﬁiform scaling oﬁ‘ thé- by a positive factor
bicity energiese;. To gccompllsh th_ls task, | take a f[xed the energy must scale linearly i-EIEmin(ﬂg): 7E ().
sequencge;}, and consider the density of stajelE) that is This follows because each of the folding energies is multi-

obtained by taking the energies of that sequence in all the,. )
possible folds, or in a subset of all the possible folds. Thi re“r?woflai?])é iug izmz constant factor, so the lowest-energy fold

density of states has the form We first restrict ourselves to energy functions containing
only u, andu,. In this case, the functiohdepends only on

p(E)=(1IN)>, S[E—E(&)]. (3)  Ma2. Since u, is quadratic in uniform scalings of the,,
B property (i) above implies thaf is proportional to/u.
Thus
Here, N is the number of folds that are considered, and
E,(€) is the energy of the foldx. The folding enthalpy Enmin( €)= u1(€) —avu,(é), (8)

Emin, Or the value ofg, for the minimum-energy fold, is

then the lower limit of the support gf(E). The description whereais a positive dimensionless constant. The sign of the
of Ein In terms of residue-residue interactions is based oru, term is negative because the minimum energy will al-
the energy moments gf(E). These are defined as ways be lower than the average enepgy of all the folds.
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The form of the energy is somewhat unconvention_al, becausgherea’ =a—2by;—3cy,. Thus the evaluation f at the
of the square root term, but in terms of computational com-, . |evel involves a two-index tensor, and the level in-
plexity the differences are practically negligible. volves a four-index tensor.

I will consider folding-enthalpy functions based on up to
four-body interactions. In this casghas as its arguments
Mo, i3, anduy,; we can just as well expredsin terms of
o, v3=pmalud?, andy,= w4/ u3. Note thatys andy, are
invariant under uniform scalings of the, while u, scales
quadratically. Then propert§i) above implies thaf/\/u, is
invariant under such uniform scalings, and thus is a function | have evaluated the accuracy of the above functional

Ill. APPLICATION TO THE SQUARE LATTICE MODEL

g of only y5 andy,. Thus forms in a model of compact folded conformations on a
square lattice, via a comparison of the results from the ap-
Emin(€) = p1(€) = Vu2(€)9( v, va). (9)  proximate analytic form8) and(9) with exact results. The

heteropolymers have 36 residues, and are constrained to have
For simplicity, the linear formg(ys, v4)=a+bys+cy, is conformations contained inside &® square. These confor-
used here. ’ mations (57 337 in numbercan be enumerated exactly, so

| now turn to the calculation of the coordination-number that for each sequenggs;} the lowest-energy fold can be
vector in terms of the residue hydrophobicity energies. Thdound. Residues are considered to be neighbors if they are

coordination-number vector for a given sequerceontains ~ touching in the ¢1,0), (0£1), or (+1,£1) directions;
the valuesZ; for the minimum-energy fold. Thus adjacent residues along the chain are not counted as neigh-

bors. Thus each site potentially has eight neighbors minus its
number of adjacent residues on the chain, which is 1 for the
Emin(6)=2, 6Z™"(&). (100  two residues at the ends, and 2 for the othigrke reason for
i counting (x1,=1) pairs as neighbors is that otherwise arti-
ficial degeneracies arise in the modlel.
Then The sequencels} are chosen from a random distribution.
In each sequence, the are chosen randomly on the interval
[ —h,0], whereh is the energy unit of the modelNote that
shifting of the average energy around which theare cho-
sen would not affect the folding properties in the space of
; ; N Thi compact conformations. In this space, all folds have a total
The second term in EqL1) vanishes for the exa@™. This of 150 neighbors, so addition of a constant shift to the

. min : . . . - .
|smki)necause7_i IS a piecewise constant function &f SINCE  \yould not affect the relative energies of folds, but rather shift
Z{"" only takes on integer values, the space of possible Valt'he energies of all the folds by the same constaFiLs €
ues ofe is divided into regions, each one corresponding to !

. min e min %has a continuum of possible values rather than a finite num-
certain value ofZ". Therefore the derivative/Zj™/dei  per corresponding to the 20 different amino acids in a pro-

IEminl 0€i=Z""(&)+ >, €Z" J€; . (11)
J

vanishes except on a set of measure zero. tein. The two-dimensional model is not sufficiently accurate
This implies that to justify a literal association o, with particular amino
. acids at this point. Using a large number of sequences, we
Z™= 9Emin/ dei , (120 have used least-squares fittihng methods to adjust the param-

etersa, b, andc [cf. Egs.(8), (9), (13), and(14)] to provide
except on a set of measure zero, and | will take this forman optimal agreement between the analytic results and the

form Z™" in the approximate calculations as well. exact ones.

For the energy functions given in Eg8) and (9), the Figure 1 shows a comparison between the exact folding
corresponding forms of the coordination-number vectors, agnergies and the analytic ones. A set of 5000 sequences was
obtained from Eq(12), are used to obtain the parameters, and the results are shown for a

distinct test set consisting of 1000 sequences. Fréane
. shows results at thg, level. Already at this level, the ana-
ZM=(Z))— (alJup) X (AZIAZ))€ (13)  Iytic estimateEq. (8)] is quite close to the exact results. The
) standard deviation is 0.8 roughly a percent of the typical
values of the folding energies. It is illuminating to assess the
accuracy from the point of view of the ordering energy, or
the energy difference between the minimum-energy fold and
/7N (A AT the average energy of all possible compact fdihich is
Zmn=(Z))~ (& /\/E); (AZiAZ))e simply u,). This was termed the “chain reconfiguration en-
ergy” by Dill [1]. In our calculations, the average value of
_(3b/M2)Z (AZAZAZ )€€ the qrdering energy is-10.&h. Thus the orgjering energy is
Tk obtained to about 8% accuracy. Upon going to thelevel
the improvement in the results is substantial. The standard
—(4C/M§/2)E (AZAZAZAZ ) eeper, (14) _deviation .is 0.68, or less than a percent of the typical fold-
3 ing energies and about 6% of the ordering energy.

and
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FIG. 1. Comparison between exact and model folding energies
for the 6X 6 lattice protein model. Energies are given in unithpf
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the energy scale of hydrophobicity energi@s.u,-level results(b)
a-level results.

For the coordination-number vectdy the rms error in the
coordination number per residue is found to be 1.31 authe
level. At theu, level, this drops to 1.19. For comparison, the os}
possible coordination numbers range fromfar a corner
residue in the middle of the chaito 7 (for a residue inside
the square, at the end of the chaili one ignores the effects
of sequence completely, and simply takes all of the sites t€
have the database-averaged coordination number, the rms « |
ror is 1.79. Figure 2 shows a comparison of the analytic
estimate(14) of Z [frame(a)] at the w4 level with the exact
result[frame(b)], for a sequence that is typical in that it has o2r
a rms error of 1.19. The analytic estimate obtains the gros
features of the exact results, in particular the peaks centere

0.6

©

Hﬂ...m

on residues 6, 25, and 35, as well as the dips centered ne ©
residues 19 and 35. However, there are also important miss-
ing features in these results, in particular the low coordina-

tion numbers of residues 3 and 10. In general, the analytic g 2. Coordination-number vectors and hydrophobicity ener-

25

35 40

results do not reach as high or as low as the exact resultgies for 36-residue proteins in thex@ lattice model. (a)
Analysis of these results in view of the hydrophobicity se-coordination-number vector obtained at tpg level, for a se-

quencefframe ()] illustrates the major effects included in quence with a rms error of 1.19, which is average for sequences
the method. In the absence of frustration effects resultingested(b) Exact coordination-number vector for the same sequence.

from the connectedness of the residues, which make it im¢) Hydrophobicity energies €;) for the above sequence.
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possible for all of the residues to simultaneously find theiraqueous to hydrophobic solverii]; in this case one needs
optimal place in the folded configuration, one would expecta way to convert these hydrophobicities to energies. The sta-
the coordination number of a residue to be determined by itistical functions can in principle be evaluated from the large
hydrophobicity: the larger the hydrophobicity, the larger thecollection of known protein structures. It is not immediately
coordination number. Application of this simple theory to theclear if this collection is large enough to evaluate the corre-
sequence shown in Fig.(@ would yield a coordination- lation functions with the accuracy needed. In addition, the
number vector with very frequent jumps. Both the analyticexisting database contains proteins with many different
and exact results have a smoother behavior, with fewelengths, so one would likely have to find a way to merge
jumps. Apparently the frustration effects reduce the fre-these data into a useful form. These efforts should await a
quency of jumps between different coordination numbersmore accurate method of predicting the coordination-number
and this effect is taken into account in the analytic estimatessector.
It is of interest to compare the present approach based on
IV. CONCLUSION the coordination-number vector to recent work based on the
_ o “contact map,” a residue-residue matrix having elements 1
The above results are encouraging, and it is in fact suryr zero according to whether two residues are in contact or
prising that one can obtain the limit of the distribution of fold ot Since the contact map contains more information than
energies with such accuracy on the basis of only a few moghe coordination-number vector, one would expect folding
ments of this distribution. Ordinarily, one expects momentyn the basis of a known contact map to be, if anything,
analysis to work well for averaged properties of a distribu-simpler than folding on the basis of the coordination-number
tion, but not something as specific as its limits. However,ector; several works have demonstrated practical algorithms
more accuracy in the calculation of the energy, and in parfg, contact-map based folding.3—15. On the other hand,
ticular the coordination number, is certainly desirable. Methyhe prediction of the coordination-number sequence from an
ods based on higher moments are probably not feasible, g§nino-acid sequence may be simpler than the prediction of
they scale unattractively with the length of the chain. How-ihe contact map, since there are fewer numbers to predict.
ever, it is possible that one could get useful information outrhis pecomes important when dealing with fits to a fixed
of calculating certain parts of all the higher moments. Thisgatabase, such as the Protein Data Bank. It is not clear at
procedure would be analogous to the well-established use Qfresent which is the preferred method. One should also note
diagrammatic resummation techniqugkl] in many-body  that recent work16] has shown that real proteins cannot be
perturbation theory. _ _ folded accurately with a pair energy function based on the
Unfortunately, we do not have a systematic collection ofcontact map. The same must then hold for energy functions
measured or calculated folding energies available for propased on the coordination-number vector. Clearly, additional
teins or other types of heteropolymers. In addition, thepnysical effects must be added to reliably fold real proteins.
present model leaves out many physical effects present ifigr example, rather than defining residue-residue contact in
real proteins. Nevertheless, it does treat the competition bgarms of a sharp threshold distance, it may be preferable to
tween the preference of individual residues for surface versugjiow the extent of contact to go smoothly to zero with in-
interior positions on the one hand, and the constraints of th@reasing distance; in this case the contact maps and
chain topology on the other hand. This competition has beepgordination-number vectors would take on real rather than
a major stumbling block in predicting coordination-numberinteger values. It is also likely that specific terms for electro-

developed here may be of use in the prediction ofyyantitatively accurate structures.

coordination-number sequences in real proteins. One needs a

hydrophobicity energy scale, as well as the statistical func-

tions(Z;), (AZ;), etc., entering the formalism. Consider-

able W_ork hqs gone into establish_ing hydrophob_ici_ty scales ACKNOWLEDGMENTS
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