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Simplified calculation of folding energies and residue coordination numbers
in random heteropolymers

A. E. Carlsson
Department of Physics, CB 1105, Washington University, St. Louis, Missouri 63130

~Received 19 October 1998!

I develop a formalism for calculating effective pair and higher-order interactions between residues in ran-
dom heteropolymers that approximately predict the folding enthalpy and the coordination numbers of indi-
vidual residues. In a simple model heteropolymer with additive couplings between residues, the folding en-
thalpy is written in terms of two-, three-, and four-body interactions between residues. The coordination
numbers are expressed in terms of interactions between up to three residues. Application to a 636 square
model shows that the folding enthalpy is obtained to an accuracy of better than 1%. The coordination numbers
are obtained with a rms error of 1.2 neighbors.@S1063-651X~99!15905-1#

PACS number~s!: 87.15.Cc, 87.14.Ee
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I. INTRODUCTION

Prediction of the three-dimensional structure of prote
in terms of the amino acid sequence continues to be a da
ing theoretical problem. Although more efficient algorithm
are regularly being devised, there is not a single exampl
successful folding of a real protein on a computer. For t
reason, it is of interest to investigate other properties that
related to the three-dimensional structure, but are easie
access on the basis of computer calculations. The fold
enthalpy, or the free-energy difference between the fu
folded state and the random coil state, is a key thermo
namic parameter in the theory of protein folding@1#. It pro-
vides the driving force for protein folding and is related
the folding temperature. Computer simulations@2# have sug-
gested that the folding temperature is closely related to
foldability of proteins. Thus a calculation of the folding e
ergy that avoids the full complexity of folding the prote
can be very advantageous. The present calculations
aimed at the zero-temperature enthalpyEmin of the folded
state, which is a key ingredient of the finite-temperature f
energy.~Other simulations@3# have pointed to the impor
tance of the energy gap, or the difference in energy betw
the lowest- and second-lowest folds; our method is not a
to predict such delicate quantities with useful accuracy!. The
coordination number vector of a protein has components
are the coordination numbers of the residues, ordered acc
ing to their position along the chain. It provides a simplifi
one-dimensional description of the structure of the protein
has been shown by Galaktionov and Marshall@4# that an
accurate estimate of the coordination number vector of a
tein can be used as a basis for predicting first the matrix
contacts between residues, and subsequently the th
dimensional structure, with promising accuracy. Thus the
velopment of a simple method of predicting the coordinat
number vector of a protein would be very useful.

This paper presents a formalism for predicting the fold
enthalpy and the coordination number vector in a model r
dom heteropolymer in a simple fashion, using simple int
actions between the residues. In addition to computatio
economy, such a description of the folding enthalpy m
PRE 591063-651X/99/59~5!/5995~6!/$15.00
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help predict the foldability of given sequences of residu
Unger and Moult@5# have argued that the reliable folding o
simple model proteins is determined by the number of fav
able local residue-residue interactions along the chain.
simplified description of the folding enthalpy can determi
which sequences of residues have generally favorable l
residue-residue interactions, so that one can predict s
aspects of foldability from the primary sequence itself, wit
out explicitly folding the protein. The method develope
here includes up to four-body interactions, which render
computationally tractable even for sequences having up
1000 residues.

The formalism, described in Sec. II, is based on a latt
heteropolymer model in which the residues are represe
by hydrophobicity energiese i , describing the extent of thei
preference for high coordination numbers. I examine
properties of the energy density of states~DOS! associated
with a particular sequence of residues. This DOS repres
the collection of energies of this sequence in the poss
folds of the polymer, so that the lower end of the DOS c
responds to the minimum-energy fold. The moments of
DOS are obtained rigorously in terms of pair or multibo
interactions between the residues. Using the moments, I
velop an approximate folding enthalpy function motivated
the known behavior of the model in certain cases. This
proach is analogous to previous applications of mom
analysis in analyzing the energetics of metallic bonding@6#.
The coordination number vector is then given as the grad
of the folding enthalpy function with respect to thee i . This
function is straightforwardly differentiated to obtain es
mates for the coordination-number vector based on inte
tions of up to three residues.

In Sec. III, I describe tests of this methodology in
636 square lattice model with compact conformations. D
agonal as well as vertical and horizontal neighbors are
cluded in the coordination number. At the level of two-bo
interactions, the folding enthalpy is obtained with an acc
racy of 1.0%; the inclusion of four-body interactions im
proves the accuracy to 0.7%. The coordination numbe
obtained with a rms error of 1.31 neighbors at the level of
additive function of the hydrophobicity energies; a descr
5995 ©1999 The American Physical Society
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5996 PRE 59A. E. CARLSSON
tion including interactions of up to three residues reduces
error to 1.19 neighbors.

II. MODEL AND FORMALISM

The heteropolymer model is based on residues on a
tice. The formalism applies to general lattices; I will lat
consider a square lattice model. The interaction energy
given fold has the form

E51/2(
iÞ j

hi j x i j . ~1!

Here thehi j are interaction energies between residuesi andj,
which are determined by the amino-acid types of residui
and j. The quantityx i j describes the proximity of residuesi
and j in the given fold. It is 1 ifi and j are neighbors, and
zero otherwise. (x i j can be generalized to have several d
ferent values, allowing for neighbors at different distanc
but I have not yet done so.!

The analysis of this type of model is simplified if on
makes the assumption that thehi j are additive, in the sens
thathi j 5e i1e j . This approximation is well justified, as ha
been shown by Liet al. @7#. They analyzed a matrix of sta
tistical potentials@8#, between residue types derived fro
observed contact frequencies, and found that the interact
could be represented to good accuracy by an additive fo
the corrections to this form were generally smaller than
additive terms by more than an order of magnitude. Giv
the additivity assumption, one has from Eq.~1! that

E5(
i

e iZi , ~2!

whereZi is the coordination number of residuei in the given
fold. In this description, thee i are energies that correspon
the hydrophobicities of the residues. A large negative va
of e corresponds to a residue that prefers a large numbe
neighbors and in this sense acts hydrophobically. A sim
random-hydrophobicity model, but off-lattice~continuous
spatial variables!, has been used by Garel and collaborat
@9# and Obukhov@10# to treat some aspects of the pha
diagram of proteins and other heteropolymers.

I now turn to the task of describing the zero-temperat
energy of the most favorable fold in terms of the hydroph
bicity energiese i . To accomplish this task, I take a fixe
sequence$e i%, and consider the density of statesr(E) that is
obtained by taking the energies of that sequence in all
possible folds, or in a subset of all the possible folds. T
density of states has the form

r~E!5~1/N!(
a

d@E2Ea~eW !#. ~3!

Here, N is the number of folds that are considered, a
Ea(eW ) is the energy of the folda. The folding enthalpy
Emin , or the value ofEa for the minimum-energy fold, is
then the lower limit of the support ofr(E). The description
of Emin in terms of residue-residue interactions is based
the energy moments ofr(E). These are defined as
e
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m15~1/N!E Er~E!dE5~1/N!(
a

Ea~eW ! ~4!

and

mn5~1/N!E ~E2m1!nr~E!dE

5~1/N!(
a

@Ea~eW !2m1#n ~ i>2!. ~5!

Thusm1 represents the average energy of all the folds. T
may be thought of as the energy of a molten-globule state
which all compactly folded states are equally representedm2
represents the mean-square width of the energy distribut
and the higher moments describe various aspects of
shape of the distribution. From Eqs.~2!, ~4!, and ~5!, one
readily shows that

m1~eW !5(
i

e i^Zi&, ~6!

m2~eW !5(
i , j

e ie j^DZiDZj&, ~7!

and analogous relations hold for the higher-order mome
Here,DZi5Zi2^Zi&, and the brackets denote averages o
the set of folds that is included inr(E), i.e., ^Zi&
5(1/N)(aZi

a , whereZi
a is the coordination number of sitei

in fold a.
Thus the moments can be written in terms of simple

teractions between the residues, and these interactions
determined by statistical properties of the set of poss
folds. I now develop an approximate method of writin
Emin(eW ) in terms of low-order moments. I first note that whe
Emin is written in terms of the moments it has the for
Emin5m11 f (m2 ,m3 , . . . ), where f is a function having
units of energy. This is because changes inm1 that do not
affect the higher moments~these are defined relative tom1)
correspond to a shift in the energy zero that does not cha
the difference betweenEmin andm1. I also note two impor-
tant properties of the functionEmin(eW ):

~i! If m2(eW ) vanishes, then the DOS has zero width, a
Emin(eW )5m1(eW ). Thus f 50 if m250.

~ii ! Under uniform scaling of thee i by a positive factor,
the energy must scale linearly, i.e.,Emin(heW )5hEmin(eW ).
This follows because each of the folding energies is mu
plied by the same constant factor, so the lowest-energy
remains the same.

We first restrict ourselves to energy functions contain
only m1 andm2. In this case, the functionf depends only on
m2. Since m2 is quadratic in uniform scalings of thee i ,
property ~ii ! above implies thatf is proportional toAm2.
Thus

Emin~eW !5m1~eW !2aAm2~eW !, ~8!

wherea is a positive dimensionless constant. The sign of
m2 term is negative because the minimum energy will
ways be lower than the average energym1 of all the folds.
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The form of the energy is somewhat unconventional, beca
of the square root term, but in terms of computational co
plexity the differences are practically negligible.

I will consider folding-enthalpy functions based on up
four-body interactions. In this case,f has as its argument
m2 , m3, andm4; we can just as well expressf in terms of
m2 , g35m3 /m2

3/2, andg45m4 /m2
2. Note thatg3 andg4 are

invariant under uniform scalings of thee i , while m2 scales
quadratically. Then property~ii ! above implies thatf /Am2 is
invariant under such uniform scalings, and thus is a funct
g of only g3 andg4. Thus

Emin~eW !5m1~eW !2Am2~eW !g~g3 ,g4!. ~9!

For simplicity, the linear formg(g3 ,g4)5a1bg31cg4 is
used here.

I now turn to the calculation of the coordination-numb
vector in terms of the residue hydrophobicity energies. T
coordination-number vector for a given sequencee i contains
the valuesZi for the minimum-energy fold. Thus

Emin~eW !5(
i

e iZi
min~eW !. ~10!

Then

]Emin /]e i5Zi
min~eW !1(

j
e j]Zj

min/]e i . ~11!

The second term in Eq.~11! vanishes for the exactZi
min . This

is becauseZi
min is a piecewise constant function ofeW ; since

Zi
min only takes on integer values, the space of possible

ues ofeW is divided into regions, each one corresponding t
certain value ofZi

min . Therefore the derivative]Zj
min/]e i

vanishes except on a set of measure zero.
This implies that

Zi
min5]Emin /]e i , ~12!

except on a set of measure zero, and I will take this fo
form Zi

min in the approximate calculations as well.
For the energy functions given in Eqs.~8! and ~9!, the

corresponding forms of the coordination-number vectors
obtained from Eq.~12!, are

Zi
min5^Zi&2~a/Am2!(

j
^DZiDZj&e j ~13!

and

Zmin5^Zi&2~a8/Am2!(
j

^DZiDZj&e j

2~3b/m2!(
j ,k

^DZiDZjDZk&e jek

2~4c/m2
3/2!(

jkl
^DZiDZjDZkDZl&e jeke l , ~14!
se
-

n

e

l-
a

s

wherea85a22bg323cg4. Thus the evaluation ofZW at the
m2 level involves a two-index tensor, and them4 level in-
volves a four-index tensor.

III. APPLICATION TO THE SQUARE LATTICE MODEL

I have evaluated the accuracy of the above functio
forms in a model of compact folded conformations on
square lattice, via a comparison of the results from the
proximate analytic forms~8! and ~9! with exact results. The
heteropolymers have 36 residues, and are constrained to
conformations contained inside a 636 square. These confor
mations~57 337 in number! can be enumerated exactly, s
that for each sequence$e i% the lowest-energy fold can b
found. Residues are considered to be neighbors if they
touching in the (61,0), (0,61), or (61,61) directions;
adjacent residues along the chain are not counted as ne
bors. Thus each site potentially has eight neighbors minu
number of adjacent residues on the chain, which is 1 for
two residues at the ends, and 2 for the others.@The reason for
counting (61,61) pairs as neighbors is that otherwise ar
ficial degeneracies arise in the model.#

The sequences$eW% are chosen from a random distributio
In each sequence, thee i are chosen randomly on the interv
@2h,0#, whereh is the energy unit of the model.~Note that
shifting of the average energy around which thee i are cho-
sen would not affect the folding properties in the space
compact conformations. In this space, all folds have a to
of 150 neighbors, so addition of a constant shift to thee i
would not affect the relative energies of folds, but rather sh
the energies of all the folds by the same constant.! Thus e i
has a continuum of possible values rather than a finite n
ber corresponding to the 20 different amino acids in a p
tein. The two-dimensional model is not sufficiently accura
to justify a literal association ofe i with particular amino
acids at this point. Using a large number of sequences,
have used least-squares fitting methods to adjust the pa
etersa, b, andc @cf. Eqs.~8!, ~9!, ~13!, and~14!# to provide
an optimal agreement between the analytic results and
exact ones.

Figure 1 shows a comparison between the exact fold
energies and the analytic ones. A set of 5000 sequences
used to obtain the parameters, and the results are shown
distinct test set consisting of 1000 sequences. Frame~a!
shows results at them2 level. Already at this level, the ana
lytic estimate@Eq. ~8!# is quite close to the exact results. Th
standard deviation is 0.86h, roughly a percent of the typica
values of the folding energies. It is illuminating to assess
accuracy from the point of view of the ordering energy,
the energy difference between the minimum-energy fold a
the average energy of all possible compact folds~which is
simply m1). This was termed the ‘‘chain reconfiguration e
ergy’’ by Dill @1#. In our calculations, the average value
the ordering energy is210.8h. Thus the ordering energy i
obtained to about 8% accuracy. Upon going to them4 level
the improvement in the results is substantial. The stand
deviation is 0.63h, or less than a percent of the typical fold
ing energies and about 6% of the ordering energy.
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5998 PRE 59A. E. CARLSSON
For the coordination-number vectorZW , the rms error in the
coordination number per residue is found to be 1.31 at them2
level. At them4 level, this drops to 1.19. For comparison, t
possible coordination numbers range from 1~for a corner
residue in the middle of the chain! to 7 ~for a residue inside
the square, at the end of the chain!. If one ignores the effects
of sequence completely, and simply takes all of the site
have the database-averaged coordination number, the rm
ror is 1.79. Figure 2 shows a comparison of the analy
estimate~14! of ZW @frame~a!# at them4 level with the exact
result@frame~b!#, for a sequence that is typical in that it ha
a rms error of 1.19. The analytic estimate obtains the gr
features of the exact results, in particular the peaks cent
on residues 6, 25, and 35, as well as the dips centered
residues 19 and 35. However, there are also important m
ing features in these results, in particular the low coordi
tion numbers of residues 3 and 10. In general, the ana
results do not reach as high or as low as the exact res
Analysis of these results in view of the hydrophobicity s
quence@frame ~c!# illustrates the major effects included i
the method. In the absence of frustration effects resul
from the connectedness of the residues, which make it

FIG. 1. Comparison between exact and model folding ener
for the 636 lattice protein model. Energies are given in units ofh,
the energy scale of hydrophobicity energies.~a! m2-level results.~b!
m4-level results.
to
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FIG. 2. Coordination-number vectors and hydrophobicity en
gies for 36-residue proteins in the 636 lattice model. ~a!
Coordination-number vector obtained at them4 level, for a se-
quence with a rms error of 1.19, which is average for sequen
tested.~b! Exact coordination-number vector for the same sequen
~c! Hydrophobicity energies (2e i) for the above sequence.
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PRE 59 5999SIMPLIFIED CALCULATION OF FOLDING ENERGIES . . .
possible for all of the residues to simultaneously find th
optimal place in the folded configuration, one would exp
the coordination number of a residue to be determined by
hydrophobicity: the larger the hydrophobicity, the larger t
coordination number. Application of this simple theory to t
sequence shown in Fig. 2~c! would yield a coordination-
number vector with very frequent jumps. Both the analy
and exact results have a smoother behavior, with fe
jumps. Apparently the frustration effects reduce the f
quency of jumps between different coordination numbe
and this effect is taken into account in the analytic estima

IV. CONCLUSION

The above results are encouraging, and it is in fact s
prising that one can obtain the limit of the distribution of fo
energies with such accuracy on the basis of only a few m
ments of this distribution. Ordinarily, one expects mome
analysis to work well for averaged properties of a distrib
tion, but not something as specific as its limits. Howev
more accuracy in the calculation of the energy, and in p
ticular the coordination number, is certainly desirable. Me
ods based on higher moments are probably not feasible
they scale unattractively with the length of the chain. Ho
ever, it is possible that one could get useful information
of calculating certain parts of all the higher moments. T
procedure would be analogous to the well-established us
diagrammatic resummation techniques@11# in many-body
perturbation theory.

Unfortunately, we do not have a systematic collection
measured or calculated folding energies available for p
teins or other types of heteropolymers. In addition,
present model leaves out many physical effects presen
real proteins. Nevertheless, it does treat the competition
tween the preference of individual residues for surface ve
interior positions on the one hand, and the constraints of
chain topology on the other hand. This competition has b
a major stumbling block in predicting coordination-numb
vectors of proteins. Therefore, I feel that the functional fo
developed here may be of use in the prediction
coordination-number sequences in real proteins. One nee
hydrophobicity energy scale, as well as the statistical fu
tions ^Zi&, ^DZi&, etc., entering the formalism. Conside
able work has gone into establishing hydrophobicity sca
for amino acids. They can be derived@7# from statistically
obtained residue-residue potentials@8#. Since this approach
provides energies directly, it would probably be the best
models of the present type. One can also obtain hydrop
bicity scales via experiments transferring amino acids fr
ut
r
t
ts

er
-
,
s.

r-

-
t
-
,
r-
-
as
-
t

s
of

f
-

e
in
e-
us
e
n

r

f
s a
-

s

r
o-

aqueous to hydrophobic solvents@12#; in this case one need
a way to convert these hydrophobicities to energies. The
tistical functions can in principle be evaluated from the lar
collection of known protein structures. It is not immediate
clear if this collection is large enough to evaluate the cor
lation functions with the accuracy needed. In addition,
existing database contains proteins with many differ
lengths, so one would likely have to find a way to mer
these data into a useful form. These efforts should awa
more accurate method of predicting the coordination-num
vector.

It is of interest to compare the present approach based
the coordination-number vector to recent work based on
‘‘contact map,’’ a residue-residue matrix having elements
or zero according to whether two residues are in contac
not. Since the contact map contains more information th
the coordination-number vector, one would expect foldi
on the basis of a known contact map to be, if anythin
simpler than folding on the basis of the coordination-num
vector; several works have demonstrated practical algorith
for contact-map based folding@13–15#. On the other hand
the prediction of the coordination-number sequence from
amino-acid sequence may be simpler than the prediction
the contact map, since there are fewer numbers to pre
This becomes important when dealing with fits to a fix
database, such as the Protein Data Bank. It is not clea
present which is the preferred method. One should also n
that recent work@16# has shown that real proteins cannot
folded accurately with a pair energy function based on
contact map. The same must then hold for energy functi
based on the coordination-number vector. Clearly, additio
physical effects must be added to reliably fold real protei
For example, rather than defining residue-residue contac
terms of a sharp threshold distance, it may be preferabl
allow the extent of contact to go smoothly to zero with i
creasing distance; in this case the contact maps
coordination-number vectors would take on real rather th
integer values. It is also likely that specific terms for elect
statics and hydrogen bonding must be included to ob
quantitatively accurate structures.
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